LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Solitons in one-dimensional mechanical linkage.

Photo by julienlphoto from unsplash

It has been observed that certain classical chains admit topologically protected zero-energy modes that are localized on the boundaries. The static features of such localized modes are captured by linearized… Click to show full abstract

It has been observed that certain classical chains admit topologically protected zero-energy modes that are localized on the boundaries. The static features of such localized modes are captured by linearized equations of motion, but the dynamical features are governed by its nonlinearity. We study quasiperiodic solutions of nonlinear equations of motion of one-dimensional classical chains. Such quasi-periodic solutions correspond to periodic trajectories in the configuration space of the discrete systems, which allows us to define solitons without relying on a continuum theory. Furthermore, we study the dynamics of solitons in inhomogeneous systems by connecting two chains with distinct parameter sets, where transmission or reflection of solitons occurs at the boundary of the two chains.

Keywords: dimensional mechanical; mechanical linkage; solitons one; one dimensional

Journal Title: Physical Review E
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.