Bias plays an important role in the enhancement of diffusion in periodic potentials. Using the continuous-time random walk in the presence of a bias, we report on an interesting phenomenon… Click to show full abstract
Bias plays an important role in the enhancement of diffusion in periodic potentials. Using the continuous-time random walk in the presence of a bias, we report on an interesting phenomenon for the enhancement of diffusion by the start of the measurement in a random energy landscape. When the variance of the waiting time diverges, in contrast to the bias-free case, the dynamics with bias becomes superdiffusive. In the superdiffusive regime, we find a distinct initial ensemble dependence of the diffusivity. Moreover, the diffusivity can be increased by the aging time when the initial ensemble is not in equilibrium. We show that the time-averaged variance converges to the corresponding ensemble-averaged variance; i.e., ergodicity is preserved. However, trajectory-to-trajectory fluctuations of the time-averaged variance decay unexpectedly slowly. Our findings provide a rejuvenation phenomenon in the superdiffusive regime, that is, the diffusivity for a nonequilibrium initial ensemble gradually increases to that for an equilibrium ensemble when the start of the measurement is delayed.
               
Click one of the above tabs to view related content.