Recently, singular value decomposition (SVD) was applied to standard Gaussian ensembles of random-matrix theory to determine the scale invariance in spectral fluctuations without performing any unfolding procedure. Here, SVD is… Click to show full abstract
Recently, singular value decomposition (SVD) was applied to standard Gaussian ensembles of random-matrix theory to determine the scale invariance in spectral fluctuations without performing any unfolding procedure. Here, SVD is applied directly to the β-Hermite ensemble and to a sparse matrix ensemble, decomposing the corresponding spectra in trend and fluctuation modes. In correspondence with known results, we obtain that fluctuation modes exhibit a crossover between soft and rigid behavior. In this way, possible artifacts introduced applying unfolding techniques are avoided. By using the trend modes, we perform data-adaptive unfolding, and we calculate traditional spectral fluctuation measures. Additionally, ensemble-averaged and individual-spectrum averaged statistics are calculated consistently within the same basis of normal modes.
               
Click one of the above tabs to view related content.