LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Self-generation of chaotic dissipative multisoliton complexes supported by competing nonlinear spin-wave interactions.

Photo by bagasvg from unsplash

A self-generation of chaotic dissipative spin-wave multisoliton complexes has been observed experimentally. Localized in time, these patterns are formed in a passively Q-switched and mode-locked magnetic film feedback ring due… Click to show full abstract

A self-generation of chaotic dissipative spin-wave multisoliton complexes has been observed experimentally. Localized in time, these patterns are formed in a passively Q-switched and mode-locked magnetic film feedback ring due to the competing three- and four-wave nonlinear spin-wave interactions. Such competition induces a modulation instability that leads to the formation of incoherent one-color four-wave bound solitons embedded in chaotic three-wave solitonlike pulses. The development of a symmetry-breaking instability causes a transition from incoherent one-color four-wave bound solitons to chaotic multicolor ones.

Keywords: generation chaotic; spin wave; multisoliton complexes; self generation; spin; chaotic dissipative

Journal Title: Physical Review E
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.