LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nonlocal transport in bounded two-dimensional systems: An iterative method.

Photo from wikipedia

The concept of transport mediated through the dynamics of "jumping" particles is used to develop an iterative method for obtaining steady-state solutions to the nonlocal transport equation in two dimensions.… Click to show full abstract

The concept of transport mediated through the dynamics of "jumping" particles is used to develop an iterative method for obtaining steady-state solutions to the nonlocal transport equation in two dimensions. The technique is self-adjoint and capable of correctly treating spatially nonuniform, asymmetric systems. An appropriate reduced version of the iteration method is used to compare with results obtained with a self-adjoint one-dimensional transport matrix approach [Maggs and Morales, Phys. Rev. E 94, 053302 (2016)10.1103/PhysRevE.94.053302]. The transport "jump" probability distribution functions are based on Lévy α-stable distributions. The technique can handle the entire Lévy α-parameter range from one (Lorentz distributions) to two (Gaussian distributions). Cases with α=2 (standard diffusion) are used to establish the validity of the iterative method. The capabilities of the iterative method are demonstrated by presenting examples from systems with various source configurations, boundary shapes, boundary conditions, and spatial variations in parameters.

Keywords: transport bounded; transport; nonlocal transport; iterative method; bounded two

Journal Title: Physical review. E
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.