LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Reinforcement learning meets minority game: Toward optimal resource allocation.

Photo from wikipedia

The main point of this paper is to provide an affirmative answer through exploiting reinforcement learning (RL) in artificial intelligence (AI) for eliminating herding without any external control in complex… Click to show full abstract

The main point of this paper is to provide an affirmative answer through exploiting reinforcement learning (RL) in artificial intelligence (AI) for eliminating herding without any external control in complex resource allocation systems. In particular, we demonstrate that when agents are empowered with RL (e.g., the popular Q-learning algorithm in AI) in that they get familiar with the unknown game environment gradually and attempt to deliver the optimal actions to maximize the payoff, herding can effectively be eliminated. Furthermore, computations reveal the striking phenomenon that, regardless of the initial state, the system evolves persistently and relentlessly toward the optimal state in which all resources are used efficiently. However, the evolution process is not without interruptions: there are large fluctuations that occur but only intermittently in time. The statistical distribution of the time between two successive fluctuating events is found to depend on the parity of the evolution, i.e., whether the number of time steps in between is odd or even. We develop a physical analysis and derive mean-field equations to gain an understanding of these phenomena. Since AI is becoming increasingly widespread, we expect our RL empowered minority game system to have broad applications.

Keywords: reinforcement learning; minority game; resource allocation; toward optimal; game

Journal Title: Physical review. E
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.