LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Theoretical foundation of detrending methods for fluctuation analysis such as detrended fluctuation analysis and detrending moving average.

Photo by dawson2406 from unsplash

We present a bottom-up derivation of fluctuation analysis with detrending for the detection of long-range correlations in the presence of additive trends or intrinsic nonstationarities. While the well-known detrended fluctuation… Click to show full abstract

We present a bottom-up derivation of fluctuation analysis with detrending for the detection of long-range correlations in the presence of additive trends or intrinsic nonstationarities. While the well-known detrended fluctuation analysis (DFA) and detrending moving average (DMA) were introduced ad hoc, we claim basic principles for such methods where DFA and DMA are then shown to be specific realizations. The mean-squared displacement of the summed time series contains the same information about long-range correlations as the autocorrelation function but has much better statistical properties for large time lags. However, the scaling exponent of its estimator on a single time series is affected not only by trends on the data but also by intrinsic nonstationarities. We therefore define the fluctuation function as mean-squared displacement with weighting kernel. We require that its estimator be unbiased and exhibit the correct scaling behavior for the random component of a signal, which is only achieved if the weighting kernel implies detrending. We show how DFA and DMA satisfy these requirements and we extract their kernel weights.

Keywords: detrended fluctuation; fluctuation; analysis detrending; fluctuation analysis; detrending moving

Journal Title: Physical review. E
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.