Dharma-wardana et al. [M. W. C. Dharma-wardana et al., Phys. Rev. E 96, 053206 (2017)2470-004510.1103/PhysRevE.96.053206] recently calculated dynamic electrical conductivities for warm dense matter as well as for nonequilibrium two-temperature states… Click to show full abstract
Dharma-wardana et al. [M. W. C. Dharma-wardana et al., Phys. Rev. E 96, 053206 (2017)2470-004510.1103/PhysRevE.96.053206] recently calculated dynamic electrical conductivities for warm dense matter as well as for nonequilibrium two-temperature states termed "ultrafast matter" (UFM) [M. W. C. Dharma-wardana, Phys. Rev. E 93, 063205 (2016)2470-004510.1103/PhysRevE.93.063205]. In this Comment we present two evident reasons why these UFM calculations are neither suited to calculate dynamic conductivities nor x-ray Thomson scattering spectra in isochorically heated warm dense aluminum. First, the ion-ion structure factor, a major input into the conductivity and scattering spectra calculations, deviates strongly from that of isochorically heated aluminum. Second, the dynamic conductivity does not show a non-Drude behavior which is an essential prerequisite for a correct description of the absorption behavior in aluminum. Additionally, we clarify misinterpretations by Dharma-wardana et al. concerning the conductivity measurements of Gathers [G. R. Gathers, Int. J. Thermophys. 4, 209 (1983)IJTHDY0195-928X10.1007/BF00502353].
               
Click one of the above tabs to view related content.