We analyze two models of subdiffusion with stochastic resetting. Each of them consists of two parts: subdiffusion based on the continuous-time random walk scheme and independent resetting events generated uniformly… Click to show full abstract
We analyze two models of subdiffusion with stochastic resetting. Each of them consists of two parts: subdiffusion based on the continuous-time random walk scheme and independent resetting events generated uniformly in time according to the Poisson point process. In the first model the whole process is reset to the initial state, whereas in the second model only the position is subject to resets. The distinction between these two models arises from the non-Markovian character of the subdiffusive process. We derive exact expressions for the two lowest moments of the full propagator, stationary distributions, and first hitting time statistics. We also show, with an example of a constant drift, how these models can be generalized to include external forces. Possible applications to data analysis and modeling of biological systems are also discussed.
               
Click one of the above tabs to view related content.