LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Correlated states in balanced neuronal networks.

Photo from wikipedia

Understanding the magnitude and structure of interneuronal correlations and their relationship to synaptic connectivity structure is an important and difficult problem in computational neuroscience. Early studies show that neuronal network… Click to show full abstract

Understanding the magnitude and structure of interneuronal correlations and their relationship to synaptic connectivity structure is an important and difficult problem in computational neuroscience. Early studies show that neuronal network models with excitatory-inhibitory balance naturally create very weak spike train correlations, defining the "asynchronous state." Later work showed that, under some connectivity structures, balanced networks can produce larger correlations between some neuron pairs, even when the average correlation is very small. All of these previous studies assume that the local network receives feedforward synaptic input from a population of uncorrelated spike trains. We show that when spike trains providing feedforward input are correlated, the downstream recurrent network produces much larger correlations. We provide an in-depth analysis of the resulting "correlated state" in balanced networks and show that, unlike the asynchronous state, it produces a tight excitatory-inhibitory balance consistent with in vivo cortical recordings.

Keywords: correlated states; states balanced; balanced neuronal; neuronal networks; state; network

Journal Title: Physical review. E
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.