LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Faraday waves over a permeable rough substrate.

Photo from wikipedia

We report on an experimental study of the Faraday instability in a vibrated fluid layer situated over a permeable and rough substrate, consisting either of a flat solid plate or… Click to show full abstract

We report on an experimental study of the Faraday instability in a vibrated fluid layer situated over a permeable and rough substrate, consisting either of a flat solid plate or of woven meshes having different openings and wire diameters, open or closed (by a sealing paint). We measure the critical acceleration and the wavelength (on the images from top) at the onset of the instability for vibration frequencies between 28 and 42 Hz. We observe that, in comparison with the flat plate, a mesh leads to an increase of the critical acceleration, whereas the wavelength is not significantly altered in none of the explored cases. In order to rationalize the observations, we use the linear theory written for the case of a flat bottom and a viscous fluid to define an effective thickness of the fluid layer. For the closed meshes the effective thickness is simply a linear function of the distance between wires constituting the mesh, whereas it exhibits a more complex behavior for the open meshes. We propose a qualitative understanding for the observed features.

Keywords: waves permeable; rough substrate; faraday waves; permeable rough

Journal Title: Physical review. E
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.