LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Two-dimensional chaotic thermostat and behavior of a thermalized charge in a weak magnetic field.

Photo by dmey503 from unsplash

A two-dimensional version of a chaotic thermostat is investigated. Its structure follows the concept previously introduced by the author [G. J. Morales, Phys. Rev. E 97, 032203 (2018)2470-004510.1103/PhysRevE.97.032203] to generate a… Click to show full abstract

A two-dimensional version of a chaotic thermostat is investigated. Its structure follows the concept previously introduced by the author [G. J. Morales, Phys. Rev. E 97, 032203 (2018)2470-004510.1103/PhysRevE.97.032203] to generate a one-dimensional chaotic thermostat, namely, the usual friction force of a deterministic thermostat is supplemented with a self-consistent fluctuating force that depends on the drag coefficient associated with coupling to the heat bath. Azimuthal symmetry requires the thermostat to have two internal degrees of freedom, thus the Martyna-Klein-Tuckerman [G. J. Martyna et al., J. Chem. Phys. 97, 2635 (1992)JCPSA60021-960610.1063/1.463940] model is chosen for the heat bath. The unmagnetized system exhibits two-dimensional diffusive behavior, achieves symmetric Maxwellian velocity distributions in the absence of an external potential, and satisfies the Einstein relation when an external force is applied. The velocity fluctuations display the characteristic exponential frequency spectrum associated with chaotic systems. The model is used to explore the diffusive motion of a thermalized charge in a weak magnetic field and the associated Hall and Pedersen mobilities. Over a range of magnetic field strengths the charge exhibits absolute negative mobility.

Keywords: chaotic thermostat; dimensional chaotic; thermostat; magnetic field; two dimensional

Journal Title: Physical review. E
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.