LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Transition to chaos in an acoustically driven cavity flow

Photo by nate_dumlao from unsplash

We consider the unsteady regimes of an acoustically-driven jet that forces a recirculating flow through successive reflections on the walls of a square cavity. The specific question being addressed is… Click to show full abstract

We consider the unsteady regimes of an acoustically-driven jet that forces a recirculating flow through successive reflections on the walls of a square cavity. The specific question being addressed is to know whether the system can sustain states of low-dimensional chaos when the acoustic intensity driving the jet is increased, and, if so, to characterise the pathway and underlying physical mechanisms. We adopt two complementary approaches, both based on data extracted from numerical simulations: (i) We first characterise successive bifurcations through the analysis of leading frequencies. Two successive phases in the evolution of the system are singled out in this way, both leading to potentially chaotic states. The two phases are separated by a drastic simplification of the dynamics that immediately follows the emergence of intermittency. The second phase also features a second intermediate state where the dynamics is simplified due to frequency-locking. (ii) Nonlinear time series analysis enables us to reconstruct the attractor of the underlying dynamical system, and to calculate its correlation dimension and leading Lyapunov exponent. Both these quantities bring confirmation that the state preceding the dynamic simplification that initiates the second phase is chaotic. Poincar\'e maps further reveal that this chaotic state in fact results from a dynamic instability of the system between two non-chaotic states respectively observed at slightly lower and slightly higher acoustic forcing.

Keywords: system; chaos acoustically; transition chaos; cavity; acoustically driven

Journal Title: Physical Review Fluids
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.