LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hund Interaction, Spin-Orbit Coupling, and the Mechanism of Superconductivity in Strongly Hole-Doped Iron Pnictides.

Photo by _zachreiner_ from unsplash

We present a novel mechanism of s-wave pairing in Fe-based superconductors. The mechanism involves holes near d_{xz}/d_{yz} pockets only and is applicable primarily to strongly hole doped materials. We argue… Click to show full abstract

We present a novel mechanism of s-wave pairing in Fe-based superconductors. The mechanism involves holes near d_{xz}/d_{yz} pockets only and is applicable primarily to strongly hole doped materials. We argue that as long as the renormalized Hund's coupling J exceeds the renormalized interorbital Hubbard repulsion U^{'}, any finite spin-orbit coupling gives rise to s-wave superconductivity. This holds even at weak coupling and regardless of the strength of the intraorbital Hubbard repulsion U. The transition temperature grows as the hole density decreases. The pairing gaps are fourfold symmetric, but anisotropic, with the possibility of eight accidental nodes along the larger pocket. The resulting state is consistent with the experiments on KFe_{2}As_{2}.

Keywords: strongly hole; mechanism; hole doped; orbit coupling; spin orbit

Journal Title: Physical review letters
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.