LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Quantum Fluctuations along Symmetry Crossover in a Kondo-Correlated Quantum Dot.

Photo from wikipedia

Universal properties of entangled many-body states are controlled by their symmetry and quantum fluctuations. By the magnetic-field tuning of the spin-orbital degeneracy in a Kondo-correlated quantum dot, we have modified… Click to show full abstract

Universal properties of entangled many-body states are controlled by their symmetry and quantum fluctuations. By the magnetic-field tuning of the spin-orbital degeneracy in a Kondo-correlated quantum dot, we have modified quantum fluctuations to directly measure their influence on the many-body properties along the crossover from SU(4) to SU(2) symmetry of the ground state. High-sensitive current noise measurements combined with the nonequilibrium Fermi liquid theory clarify that the Kondo resonance and electron correlations are enhanced as the fluctuations, measured by the Wilson ratio, increase along the symmetry crossover. Our achievement demonstrates that nonlinear noise constitutes a measure of quantum fluctuations that can be used to tackle quantum phase transitions.

Keywords: quantum fluctuations; along symmetry; correlated quantum; kondo correlated; quantum dot; symmetry

Journal Title: Physical review letters
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.