LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cooling a Harmonic Oscillator by Optomechanical Modification of Its Bath.

Photo from wikipedia

Optomechanical systems show tremendous promise for the high-sensitivity sensing of forces and modification of mechanical properties via light. For example, similar to neutral atoms and trapped ions, laser cooling of… Click to show full abstract

Optomechanical systems show tremendous promise for the high-sensitivity sensing of forces and modification of mechanical properties via light. For example, similar to neutral atoms and trapped ions, laser cooling of mechanical motion by radiation pressure can take single mechanical modes to their ground state. Conventional optomechanical cooling is able to introduce an additional damping channel to mechanical motion while keeping its thermal noise at the same level, and, as a consequence, the effective temperature of the mechanical mode is lowered. However, the ratio of the temperature to the quality factor remains roughly constant, preventing dramatic advances in quantum sensing using this approach. Here we propose an approach for simultaneously reducing the thermal load on a mechanical resonator while improving its quality factor. In essence, we use the optical interaction to dynamically modify the dominant damping mechanism, providing an optomechanically induced effect analogous to a phononic band gap. The mechanical mode of interest is assumed to be weakly coupled to its heat bath but strongly coupled to a second mechanical mode, which is cooled by radiation pressure coupling to a red-detuned cavity field. We also identify a realistic optomechanical design that has the potential to realize this novel cooling scheme.

Keywords: oscillator optomechanical; bath; cooling harmonic; harmonic oscillator; mechanical mode; modification

Journal Title: Physical review letters
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.