LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Interacting Electrons in Graphene: Fermi Velocity Renormalization and Optical Response.

Photo from academic.microsoft.com

We have developed a Hartree-Fock theory for electrons on a honeycomb lattice aiming to solve a long-standing problem of the Fermi velocity renormalization in graphene. Our model employs no fitting… Click to show full abstract

We have developed a Hartree-Fock theory for electrons on a honeycomb lattice aiming to solve a long-standing problem of the Fermi velocity renormalization in graphene. Our model employs no fitting parameters (like an unknown band cutoff) but relies on a topological invariant (crystal structure function) that makes the Hartree-Fock sublattice spinor independent of the electron-electron interaction. Agreement with the experimental data is obtained assuming static self-screening including local field effects. As an application of the model, we derive an explicit expression for the optical conductivity and discuss the renormalization of the Drude weight. The optical conductivity is also obtained via precise quantum MonteĀ Carlo calculations which compares well to our mean-field approach.

Keywords: interacting electrons; fermi velocity; renormalization; velocity renormalization; electrons graphene

Journal Title: Physical review letters
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.