Very few topological systems with long-range couplings have been considered so far due to our lack of analytic approaches. Here we extend the Kitaev chain, a 1D quantum liquid, to… Click to show full abstract
Very few topological systems with long-range couplings have been considered so far due to our lack of analytic approaches. Here we extend the Kitaev chain, a 1D quantum liquid, to infinite-range couplings and study its topological properties. We demonstrate that, even though topological phases are intimately linked to the notion of locality, the infinite-range couplings give rise to topological zero and nonzero energy Majorana end modes depending on the boundary conditions of the system. We show that the analytically derived properties are to a large degree stable against modifications to decaying long-range couplings. Our work opens new frontiers for topological states of matter that are relevant to current experiments, where systems with interactions of variable range can be designed.
               
Click one of the above tabs to view related content.