The conversion of charge currents into spin currents in nonmagnetic conductors is a hallmark manifestation of spin-orbit coupling that has important implications for spintronic devices. Here we report the measurement… Click to show full abstract
The conversion of charge currents into spin currents in nonmagnetic conductors is a hallmark manifestation of spin-orbit coupling that has important implications for spintronic devices. Here we report the measurement of the interfacial spin accumulation induced by the spin Hall effect in Pt and W thin films using magneto-optical Kerr microscopy. We show that the Kerr rotation has opposite sign in Pt and W and scales linearly with current density. By comparing the experimental results with ab initio calculations of the spin Hall and magneto-optical Kerr effects, we quantitatively determine the current-induced spin accumulation at the Pt interface as 5×10^{-12} μ_{B} A^{-1} cm^{2} per atom. From thickness-dependent measurements, we determine the spin diffusion length in a single Pt film to be 11±3 nm, which is significantly larger compared to that of Pt adjacent to a magnetic layer.
               
Click one of the above tabs to view related content.