LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ultrafast Generation of Unconventional {001} Loops in Si.

Photo from academic.microsoft.com

Ultrafast laser annealing of ion implanted Si has led to thermodynamically unexpected large {001} self-interstitial loops, and the failure of Ostwald ripening models for describing self-interstitial cluster growth. We have… Click to show full abstract

Ultrafast laser annealing of ion implanted Si has led to thermodynamically unexpected large {001} self-interstitial loops, and the failure of Ostwald ripening models for describing self-interstitial cluster growth. We have carried out molecular dynamics simulations in combination with focused experiments in order to demonstrate that at temperatures close to the melting point, self-interstitial rich Si is driven into dense liquidlike droplets that are highly mobile within the solid crystalline Si matrix. These liquid droplets grow by a coalescence mechanism and eventually transform into {001} loops through a liquid-to-solid phase transition in the nanosecond time scale.

Keywords: 001 loops; unconventional 001; self interstitial; ultrafast generation; generation unconventional

Journal Title: Physical review letters
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.