Synchrotron x-ray diffraction measurements of nitrogen are performed up to 120 GPa to determine the melting curve and the structural changes of the solid and liquid phases along it. The melting… Click to show full abstract
Synchrotron x-ray diffraction measurements of nitrogen are performed up to 120 GPa to determine the melting curve and the structural changes of the solid and liquid phases along it. The melting temperature exhibits a monotonic increase up to the triple point where the epsilon molecular solid, the cubic gauche covalent solid, and the fluid meet at 116 GPa, 2080 K. Above, the stability of the cubic gauche phase induces a sharp increase of the melting curve. The structural data on liquid nitrogen show that the latter remains molecular over the whole probed domain, which contradicts the prediction of a liquid-liquid transition at 88 GPa, 2000 K. These findings thus largely revisit the phase diagram of hot dense nitrogen and challenge the current understanding of this model system.
               
Click one of the above tabs to view related content.