LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Helimagnon Resonances in an Intrinsic Chiral Magnonic Crystal.

We experimentally study magnetic resonances in the helical and conical magnetic phases of the chiral magnetic insulator Cu_{2}OSeO_{3} at the temperature T=5  K. Using a broadband microwave spectroscopy technique based on… Click to show full abstract

We experimentally study magnetic resonances in the helical and conical magnetic phases of the chiral magnetic insulator Cu_{2}OSeO_{3} at the temperature T=5  K. Using a broadband microwave spectroscopy technique based on vector network analysis, we identify three distinct sets of helimagnon resonances in the frequency range 2  GHz≤f≤20  GHz with low magnetic damping α≤0.003. The extracted resonance frequencies are in accordance with calculations of the helimagnon band structure found in an intrinsic chiral magnonic crystal. The periodic modulation of the equilibrium spin direction that leads to the formation of the magnonic crystal is a direct consequence of the chiral magnetic ordering caused by the Dzyaloshinskii-Moriya interaction. The mode coupling in the magnonic crystal allows excitation of helimagnons with wave vectors that are multiples of the spiral wave vector.

Keywords: helimagnon resonances; magnonic crystal; resonances intrinsic; chiral magnonic; crystal; intrinsic chiral

Journal Title: Physical review letters
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.