LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Measurement of the Frequency of the 2 ^{3}S-2 ^{3}P Transition of ^{4}He.

Photo by eberdevine from unsplash

The 2 ^{3}S-2 ^{3}P transition of ^{4}He was measured by comb-linked laser spectroscopy using a transverse-cooled atomic beam. The centroid frequency was determined to be 276 736 495 600.0(1.4) kHz, with a fractional uncertainty of 5.1×10^{-12}.… Click to show full abstract

The 2 ^{3}S-2 ^{3}P transition of ^{4}He was measured by comb-linked laser spectroscopy using a transverse-cooled atomic beam. The centroid frequency was determined to be 276 736 495 600.0(1.4) kHz, with a fractional uncertainty of 5.1×10^{-12}. This value is not only more accurate but also differs by as much as -49.5  kHz (20σ) from the previous result given by [Cancio Pastor et al., Phys. Rev. Lett. 92, 023001 (2004)PRLTAO0031-900710.1103/PhysRevLett.92.023001; Cancio Pastor et al.Phys. Rev. Lett.97, 139903(E) (2006)10.1103/PhysRevLett.97.139903; Cancio Pastor et al.Phys. Rev. Lett.108, 143001 (2012)10.1103/PhysRevLett.108.143001]. In combination with ongoing theoretical calculations, this work may allow the most accurate determination of the nuclear charge radius of helium.

Keywords: cancio pastor; pastor phys; transition; frequency; rev lett; phys rev

Journal Title: Physical review letters
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.