LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Blue-Detuned Magneto-Optical Trap.

Photo from academic.microsoft.com

We present the properties and advantages of a new magneto-optical trap (MOT) where blue-detuned light drives "type-II" transitions that have dark ground states. Using ^{87}Rb, we reach a radiation-pressure-limited density… Click to show full abstract

We present the properties and advantages of a new magneto-optical trap (MOT) where blue-detuned light drives "type-II" transitions that have dark ground states. Using ^{87}Rb, we reach a radiation-pressure-limited density exceeding 10^{11}  cm^{-3} and a temperature below 30  μK. The phase-space density is higher than in normal atomic MOTs and a million times higher than comparable red-detuned type-II MOTs, making the blue-detuned MOT particularly attractive for molecular MOTs, which rely on type-II transitions. The loss of atoms from the trap is dominated by ultracold collisions between Rb atoms. For typical trapping conditions, we measure a loss rate of 1.8(4)×10^{-10}  cm^{3} s^{-1}.

Keywords: magneto optical; optical trap; blue detuned; detuned magneto

Journal Title: Physical review letters
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.