The hydrogen molecule has become a test ground for quantum electrodynamical calculations in molecules. Expanding beyond studies on stable hydrogenic species to the heavier radioactive tritium-bearing molecules, we report on… Click to show full abstract
The hydrogen molecule has become a test ground for quantum electrodynamical calculations in molecules. Expanding beyond studies on stable hydrogenic species to the heavier radioactive tritium-bearing molecules, we report on a measurement of the fundamental T_{2} vibrational splitting (v=0→1) for J=0-5 rotational levels. Precision frequency metrology is performed with high-resolution coherent anti-Stokes Raman spectroscopy at an experimental uncertainty of 10-12 MHz, where sub-Doppler saturation features are exploited for the strongest transition. The achieved accuracy corresponds to a 50-fold improvement over a previous measurement, and it allows for the extraction of relativistic and QED contributions to T_{2} transition energies.
               
Click one of the above tabs to view related content.