LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Observation of Squeezed Light in the 2  μm Region.

Photo from academic.microsoft.com

We present the generation and detection of squeezed light in the 2  μm wavelength region. This experiment is a crucial step in realizing the quantum noise reduction techniques that will be… Click to show full abstract

We present the generation and detection of squeezed light in the 2  μm wavelength region. This experiment is a crucial step in realizing the quantum noise reduction techniques that will be required for future generations of gravitational-wave detectors. Squeezed vacuum is generated via degenerate optical parametric oscillation from a periodically poled potassium titanyl phosphate crystal, in a dual resonant cavity. The experiment uses a frequency stabilized 1984 nm thulium fiber laser, and squeezing is detected using balanced homodyne detection with extended InGaAs photodiodes. We have measured 4.0±0.1  dB of squeezing and 10.5±0.5  dB of antisqueezing relative to the shot noise level in the audio frequency band, limited by photodiode quantum efficiency. The inferred squeezing level directly after the optical parametric oscillator, after accounting for known losses and phase noise, is 10.7 dB.

Keywords: squeezed light; observation squeezed; light region; region

Journal Title: Physical review letters
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.