Energy differences between analogue states in the T=1/2 ^{23}Mg-^{23}Na mirror nuclei have been measured along the rotational yrast bands. This allows us to search for effects arising from isospin-symmetry-breaking interactions… Click to show full abstract
Energy differences between analogue states in the T=1/2 ^{23}Mg-^{23}Na mirror nuclei have been measured along the rotational yrast bands. This allows us to search for effects arising from isospin-symmetry-breaking interactions (ISB) and/or shape changes. Data are interpreted in the shell model framework following the method successfully applied to nuclei in the f_{7/2} shell. It is shown that the introduction of a schematic ISB interaction of the same type of that used in the f_{7/2} shell is needed to reproduce the data. An alternative novel description, applied here for the first time, relies on the use of an effective interaction deduced from a realistic charge-dependent chiral nucleon-nucleon potential. This analysis provides two important results: (i) The mirror energy differences give direct insight into the nuclear skin; (ii) the skin changes along the rotational bands are strongly correlated with the difference between the neutron and proton occupations of the s_{1/2} "halo" orbit.
               
Click one of the above tabs to view related content.