Understanding magnetic interactions in the parent compounds of high-temperature superconductors forms the basis for determining their role for the mechanism of superconductivity. For parent compounds of iron pnictide superconductors such… Click to show full abstract
Understanding magnetic interactions in the parent compounds of high-temperature superconductors forms the basis for determining their role for the mechanism of superconductivity. For parent compounds of iron pnictide superconductors such as AFe_{2}As_{2} (A=Ba, Ca, Sr), although spin excitations have been mapped out throughout the entire Brillouin zone, the respective measurements were carried out on twinned samples and did not allow for a conclusive determination of the spin dynamics. Here we use inelastic neutron scattering to completely map out spin excitations of ∼100% detwinned BaFe_{2}As_{2}. By comparing observed spectra with theoretical calculations, we conclude that the spin excitations can be well described by an itinerant model when taking into account moderate electronic correlation effects.
               
Click one of the above tabs to view related content.