LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Temperature Controlled Fulde-Ferrell-Larkin-Ovchinnikov Instability in Superconductor-Ferromagnet Hybrids.

Photo by karsten116 from unsplash

We show that a wide class of layered superconductor-ferromagnet (S/F) hybrids demonstrates the emergence of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase well below the superconducting transition temperature. By decreasing the temperature, one… Click to show full abstract

We show that a wide class of layered superconductor-ferromagnet (S/F) hybrids demonstrates the emergence of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase well below the superconducting transition temperature. By decreasing the temperature, one can switch the system from uniform to the FFLO state which is accompanied by the damping of the diamagnetic Meissner response down to zero and also by the sign change in the curvature of the current-velocity dependence. Our estimates show that an additional layer of the normal metal (N) covering the ferromagnet substantially softens the conditions required for the predicted FFLO instability, and for existing S/F/N systems, the temperature of the transition into the FFLO phase can reach several kelvins.

Keywords: ferrell larkin; larkin ovchinnikov; ferromagnet hybrids; fulde ferrell; superconductor ferromagnet; ferromagnet

Journal Title: Physical review letters
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.