LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Interaction Effects with Varying N in SU(N) Symmetric Fermion Lattice Systems.

Photo by eduardoflorespe from unsplash

The interaction effects in ultracold Fermi gases with SU(N) symmetry are studied nonperturbatively in half filled one-dimensional lattices by employing quantum Monte Carlo simulations. We find that, as N increases, weak… Click to show full abstract

The interaction effects in ultracold Fermi gases with SU(N) symmetry are studied nonperturbatively in half filled one-dimensional lattices by employing quantum Monte Carlo simulations. We find that, as N increases, weak and strong interacting systems are driven to a crossover region, but from opposite directions as a convergence of itinerancy and Mottness. In the weak interaction region, particles are nearly itinerant, and interparticle collisions are enhanced by N, resulting in the amplification of interaction effects. In contrast, in the strong coupling region, increasing N softens the Mott-insulating background through the enhanced virtual hopping processes. The crossover region exhibits nearly N-independent physical quantities, including the relative bandwidth, Fermi distribution, and the spin structure factor. The difference between even-N and odd-N systems is most prominent at small N's with strong interactions, since the odd case allows local real hopping with an energy scale much larger than the virtual one. The above effects can be experimentally tested in ultracold atom experiments with alkaline-earth(-like) fermions such as ^{87}Sr (^{173}Yb).

Keywords: effects varying; varying symmetric; symmetric fermion; interaction; interaction effects; region

Journal Title: Physical review letters
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.