LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High-Dimensional Entanglement in States with Positive Partial Transposition.

Photo from wikipedia

Genuine high-dimensional entanglement, i.e., the property of having a high Schmidt number, constitutes an instrumental resource in quantum communication, overcoming limitations of low-dimensional systems. States with a positive partial transpose… Click to show full abstract

Genuine high-dimensional entanglement, i.e., the property of having a high Schmidt number, constitutes an instrumental resource in quantum communication, overcoming limitations of low-dimensional systems. States with a positive partial transpose (PPT) are generally considered weakly entangled, as they can never be distilled into pure entangled states. This naturally raises the question of whether high Schmidt numbers are possible for PPT states. Volume estimates suggest that optimal, i.e., linear, scaling in the local dimension should be possible, albeit without providing insight into the possible slope. We provide the first explicit construction of a family of PPT states that achieves linear scaling in the local dimension and we prove that random PPT states typically share this feature. Our construction also allows us to prove a recent conjecture of Chen et al. on the existence of PPT states whose Schmidt number increases by an arbitrarily large amount upon partial transposition. Finally, we link the Schmidt number to entangled sub-block matrices of a quantum state. We use this connection to prove that quantum states that are either (i) invariant under partial transposition on the smallest of their two subsystems, or (ii) absolutely PPT cannot have a maximal Schmidt number. Overall, our findings shed new light on some fundamental problems in entanglement theory.

Keywords: dimensional entanglement; high dimensional; states positive; partial transposition; transposition; schmidt number

Journal Title: Physical review letters
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.