LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dynamical Critical Scaling of Long-Range Interacting Quantum Magnets.

Photo from academic.microsoft.com

Slow quenches of the magnetic field across the paramagnetic-ferromagnetic phase transition of spin systems produce heat. In systems with short-range interactions the heat exhibits universal power-law scaling as a function… Click to show full abstract

Slow quenches of the magnetic field across the paramagnetic-ferromagnetic phase transition of spin systems produce heat. In systems with short-range interactions the heat exhibits universal power-law scaling as a function of the quench rate, known as Kibble-Zurek scaling. In this work we analyze slow quenches of the magnetic field in the Lipkin-Meshkov-Glick (LMG) model, which describes fully connected quantum spins. We analytically determine the quantum contribution to the residual heat as a function of the quench rate δ by means of a Holstein-Primakoff expansion about the mean-field value. Unlike in the case of short-range interactions, scaling laws in the LMG model are only found for a ramp starting or ending at the critical point. If instead the ramp is symmetric, as in the typical Kibble-Zurek scenario, then the number of excitations exhibits a crossover behavior as a function of δ and tends to a constant in the thermodynamic limit. Previous, and seemingly contradictory, theoretical studies are identified as specific limits of this dynamics. Our results can be tested on several experimental platforms, including quantum gases and trapped ions.

Keywords: critical scaling; range; range interacting; dynamical critical; long range; scaling long

Journal Title: Physical review letters
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.