LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Topological Entanglement-Spectrum Crossing in Quench Dynamics.

Photo by johnnymcclung from unsplash

We unveil the stable (d+1)-dimensional topological structures underlying the quench dynamics for all of the Altland-Zirnbauer classes in d=1 dimension, and we propose to detect such dynamical topology from the… Click to show full abstract

We unveil the stable (d+1)-dimensional topological structures underlying the quench dynamics for all of the Altland-Zirnbauer classes in d=1 dimension, and we propose to detect such dynamical topology from the time evolution of entanglement spectra. Focusing on systems in classes BDI and D, we find crossings in single-particle entanglement spectra for quantum quenches between different symmetry-protected topological phases. The entanglement-spectrum crossings are shown to be stable against symmetry-preserving disorder and faithfully reflect both Z (class BDI) and Z_{2} (class D) topological characterizations. As a by-product, we unravel the topological origin of the global degeneracies temporarily emerging in the many-body entanglement spectrum in the quench dynamics of the transverse-field Ising model. These findings can experimentally be tested in ultracold atoms and trapped ions with the help of cutting-edge tomography for quantum many-body states. Our work paves the way towards a systematic understanding of the role of topology in quench dynamics.

Keywords: topology; entanglement spectrum; quench dynamics; topological entanglement

Journal Title: Physical review letters
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.