By using a millijoule kHz femtosecond laser pulse to irradiate a preformed expanding spherical plasma, which is driven by a prepulse with intensity of 1×10^{14} W/cm^{2}, we observe fast-electron-mediated filamentary structures… Click to show full abstract
By using a millijoule kHz femtosecond laser pulse to irradiate a preformed expanding spherical plasma, which is driven by a prepulse with intensity of 1×10^{14} W/cm^{2}, we observe fast-electron-mediated filamentary structures and an accompanying self-organized magnetic-tube array with 2000 T via time-resolved magneto-optical polarization rotation measurements. We reveal that these periodical filamentary structures predominantly originate from ejected energetic electron flows from the inner denser region of the spherical plasma, which will induce the electron Weibel instability and magnetic field organization and amplification in the expanding plasma in 2 ps. These results open new paths to investigate amplification of intense magnetic fields and the radiation signature from gamma-ray bursts just by means of a much smaller and robust experimental platform.
               
Click one of the above tabs to view related content.