LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ultraflatbands and Shear Solitons in Moiré Patterns of Twisted Bilayer Transition Metal Dichalcogenides.

Photo from wikipedia

Ultraflatbands in twisted bilayers of two-dimensional materials have the potential to host strong correlations, including the Mott-insulating phase at half-filling of the band. Using first-principles density functional theory calculations, we… Click to show full abstract

Ultraflatbands in twisted bilayers of two-dimensional materials have the potential to host strong correlations, including the Mott-insulating phase at half-filling of the band. Using first-principles density functional theory calculations, we show the emergence of ultraflatbands at the valence band edge in twisted bilayer MoS_{2}, a prototypical transition metal dichalcogenide. The computed band widths, 5 and 23 meV for 56.5° and 3.5° twist angles, respectively, are comparable to that of twisted bilayer graphene near "magic" angles. Large structural transformations in the moiré patterns lead to formation of shear solitons at stacking boundaries and strongly influence the electronic structure. We extend our analysis for twisted bilayer MoS_{2} to show that flatbands can occur at the valence band edge of twisted bilayer WS_{2}, MoSe_{2}, and WSe_{2} as well.

Keywords: transition metal; shear solitons; twisted bilayer; moir patterns

Journal Title: Physical review letters
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.