LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Significant Enhancement of N_{2}^{+} Lasing by Polarization-Modulated Ultrashort Laser Pulses.

Photo from wikipedia

We show that the intensity of self-seeded N_{2}^{+} lasing at 391 nm, assigned to the B^{2}Σ_{u}^{+}(v^{'}=0)→X^{2}Σ_{g}^{+}(v^{''}=0) emission, is enhanced by 2 orders of magnitude by modulating in time the polarization of… Click to show full abstract

We show that the intensity of self-seeded N_{2}^{+} lasing at 391 nm, assigned to the B^{2}Σ_{u}^{+}(v^{'}=0)→X^{2}Σ_{g}^{+}(v^{''}=0) emission, is enhanced by 2 orders of magnitude by modulating in time the polarization of an intense ultrashort near-IR (40 fs, 800 nm) laser pulse with which N_{2} is irradiated. We find that this dramatic enhancement of the 391 nm lasing is sensitive to the temporal variation of the polarization state within the laser pulse while the intensity of the spontaneous fluorescence emission at 391 nm is kept constant when the polarization state varies. We conclude that a postionization multiple-state coupling, through which the population can be transferred from the X^{2}Σ_{g}^{+} state of N_{2}^{+} to the first electronically excited A^{2}Π_{u} state, leads to the depletion of the population in the X^{2}Σ_{g}^{+} state, and consequently, to the population inversion between the X^{2}Σ_{g}^{+} state and the B^{2}Σ_{u}^{+} state.

Keywords: lasing polarization; significant enhancement; laser; polarization; state; enhancement lasing

Journal Title: Physical review letters
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.