LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Role of Electric Fields on Enhanced Electron Correlation in Surface-Doped FeSe.

Photo by kellysikkema from unsplash

Electron-doped high-T_{c} FeSe reportedly has a strong electron correlation that is enhanced with doping. It has been noticed that significant electric fields exist inevitably between FeSe and external donors along… Click to show full abstract

Electron-doped high-T_{c} FeSe reportedly has a strong electron correlation that is enhanced with doping. It has been noticed that significant electric fields exist inevitably between FeSe and external donors along with electron transfer. However, the effects of such fields on the electron correlation are yet to be explored. Here we study potassium- (K-) dosed FeSe layers using density-functional theory combined with dynamical mean-field theory to investigate the roles of such electric fields on the strength of the electron correlation. We find, very interestingly, that the electronic potential-energy difference between the topmost Se and Fe atomic layers, generated by local electric fields of ionized K atoms, weakens the Se-mediated hopping between Fe d orbitals. Since it is the dominant hopping channel in FeSe, its reduction narrows the Fe d bands near the Fermi level, enhancing the electron correlation. This effect is orbital dependent and occurs in the topmost FeSe layer only. We also find the K dosing may increase the Se height, enhancing the electron correlation further. These results shed new light on the comprehensive study of high-T_{c} FeSe and other low-dimensional systems.

Keywords: role electric; electron correlation; fields enhanced; correlation; electric fields

Journal Title: Physical review letters
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.