Magnetic structures of organic Mott insulators X[Pd(dmit)_{2}]_{2} (X=Me_{4}P, Me_{4}Sb), of which electronic states are located near a quantum spin liquid (X=EtMe_{3}Sb), are demonstrated by ^{13}C nuclear magnetic resonance. Antiferromagnetic spectra… Click to show full abstract
Magnetic structures of organic Mott insulators X[Pd(dmit)_{2}]_{2} (X=Me_{4}P, Me_{4}Sb), of which electronic states are located near a quantum spin liquid (X=EtMe_{3}Sb), are demonstrated by ^{13}C nuclear magnetic resonance. Antiferromagnetic spectra and nuclear relaxations show two distinct magnetic moments within each Pd(dmit)_{2} molecule, which cannot be described by single band dimer-Mott model and requires intramolecular electronic correlation. This unconventional fragmentation of S=1/2 electron spin with strong quantum fluctuation is presumably caused by nearly degenerated intramolecular multiple orbitals, and shares a notion of quantum liquids where electronic excitations are fractionalized and S=1/2 spin is no longer an elementary particle.
               
Click one of the above tabs to view related content.