LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Tomographic Extraction of the Internuclear Separation Based on Two-Center Interference with Aligned Diatomic Molecules.

Photo from wikipedia

We experimentally investigate the two-dimensional photoelectron momentum spectra of aligned diatomic molecules in an intense laser field. Our results reveal a novel prominent valley structure in the molecular alignment dependence… Click to show full abstract

We experimentally investigate the two-dimensional photoelectron momentum spectra of aligned diatomic molecules in an intense laser field. Our results reveal a novel prominent valley structure in the molecular alignment dependence of the high-energy photoelectron spectra along the laser polarization. Resorting to the molecular strong-field approximation and a simple semiclassical analysis, we show that this valley structure stems from the destructive two-center interference of the laser-driven rescattered electrons in diatomic molecules. Based on this two-center interference with aligned diatomic molecules, we demonstrate for the first time a tomographic method to extract the molecular internuclear separation, providing a more straightforward approach of molecular imaging, in comparison with, e.g., laser-induced electron diffraction and fixed-angle broadband laser-driven electron scattering.

Keywords: aligned diatomic; two center; based two; center interference; diatomic molecules

Journal Title: Physical review letters
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.