LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Compressed Ultrafast Spectral-Temporal Photography.

Photo by heftiba from unsplash

Acquiring ultrafast and high spectral resolution optical images is key to measure transient physical or chemical processes, such as photon propagation, plasma dynamics, and femtosecond chemical reactions. At a trillion… Click to show full abstract

Acquiring ultrafast and high spectral resolution optical images is key to measure transient physical or chemical processes, such as photon propagation, plasma dynamics, and femtosecond chemical reactions. At a trillion Hz frame rate, most ultrafast imaging modalities can acquire only a limited number of frames. Here, we present a compressed ultrafast spectral-temporal (CUST) photographic technique, enabling both an ultrahigh frame rate of 3.85 trillion Hz and a large frame number. We demonstrate that CUST photography records 60 frames, enabling precisely recording light propagation, reflection, and self-focusing in nonlinear media over 30 ps. CUST photography has the potential to further increase the frame number beyond hundreds of frames. Using spectral-temporal coupling, CUST photography can record multiple frames with a subnanometer spectral resolution with a single laser exposure, enabling ultrafast spectral imaging. CUST photography with high frame rate, high spectral resolution, and high frame number in a single modality offer a new tool for observing many transient phenomena with high temporal complexity and high spectral precision.

Keywords: frame; ultrafast spectral; spectral temporal; cust photography; compressed ultrafast; photography

Journal Title: Physical review letters
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.