LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Excited States in Bilayer Graphene Quantum Dots.

Photo from wikipedia

We report ground- and excited-state transport through an electrostatically defined few-hole quantum dot in bilayer graphene in both parallel and perpendicular applied magnetic fields. A remarkably clear level scheme for… Click to show full abstract

We report ground- and excited-state transport through an electrostatically defined few-hole quantum dot in bilayer graphene in both parallel and perpendicular applied magnetic fields. A remarkably clear level scheme for the two-particle spectra is found by analyzing finite bias spectroscopy data within a two-particle model including spin and valley degrees of freedom. We identify the two-hole ground state to be a spin-triplet and valley-singlet state. This spin alignment can be seen as Hund's rule for a valley-degenerate system, which is fundamentally different from quantum dots in carbon nanotubes, where the two-particle ground state is a spin-singlet state. The spin-singlet excited states are found to be valley-triplet states by tilting the magnetic field with respect to the sample plane. We quantify the exchange energy to be 0.35 meV and measure a valley and spin g factor of 36 and 2, respectively.

Keywords: bilayer graphene; quantum dots; excited states; state; state spin

Journal Title: Physical review letters
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.