LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Gate Tunable Dark Trions in Monolayer WSe_{2}.

Photo from wikipedia

Monolayer WSe_{2} is an intriguing material to explore dark exciton physics. We have measured the photoluminescence from dark excitons and trions in ultraclean monolayer WSe_{2} devices encapsulated by boron nitride.… Click to show full abstract

Monolayer WSe_{2} is an intriguing material to explore dark exciton physics. We have measured the photoluminescence from dark excitons and trions in ultraclean monolayer WSe_{2} devices encapsulated by boron nitride. The dark trions can be tuned continuously between negative and positive trions with electrostatic gating. We reveal their spin-triplet configuration and distinct valley optical emission by their characteristic Zeeman splitting under a magnetic field. The dark trion binding energies are 14-16 meV, slightly lower than the bright trion binding energies (21-35 meV). The dark trion lifetime (∼1.3  ns) is two orders of magnitude longer than the bright trion lifetime (∼10  ps) and can be tuned between 0.4 and 1.3 ns by gating. Such robust, optically detectable, and gate tunable dark trions may help us realize trion transport in two-dimensional materials.

Keywords: gate tunable; trion; trions monolayer; tunable dark; monolayer wse; dark trions

Journal Title: Physical review letters
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.