We report on the novel mechanism of electron scattering in hybrid Bose-Fermi systems consisting of a two-dimensional electron gas in the vicinity of an exciton condensate: We show that in… Click to show full abstract
We report on the novel mechanism of electron scattering in hybrid Bose-Fermi systems consisting of a two-dimensional electron gas in the vicinity of an exciton condensate: We show that in certain ranges of temperatures, the bogolon-pair-mediated scattering proves to be dominating over the conventional acoustic phonon channel, over the single-bogolon scattering, and over the scattering on impurities. We develop a microscopic theory of this effect, focusing on GaAs and MoS_{2} materials, and we find the principal temperature dependence of resistivity, distinct from the conventional phonon-mediated processes. Further, we scrutinize parameters and suggest a way to design composite samples with predefined electron mobilities, and we propose a mechanism of electron pairing for superconductivity.
               
Click one of the above tabs to view related content.