LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Reversible Quantum Information Spreading in Many-Body Systems near Criticality.

Photo by ramaissance from unsplash

Quantum chaotic interacting N-particle systems are assumed to show fast and irreversible spreading of quantum information on short (Ehrenfest) time scales ∼logN. Here, we show that, near criticality, certain many-body… Click to show full abstract

Quantum chaotic interacting N-particle systems are assumed to show fast and irreversible spreading of quantum information on short (Ehrenfest) time scales ∼logN. Here, we show that, near criticality, certain many-body systems exhibit fast initial scrambling, followed subsequently by oscillatory behavior between reentrant localization and delocalization of information in Hilbert space. We consider both integrable and nonintegrable quantum critical bosonic systems with attractive contact interaction that exhibit locally unstable dynamics in the corresponding many-body phase space of the large-N limit. Semiclassical quantization of the latter accounts for many-body correlations in excellent agreement with simulations. Most notably, it predicts an asymptotically constant local level spacing ℏ/τ, again given by τ∼logN. This unique timescale governs the long-time behavior of out-of-time-order correlators that feature quasiperiodic recurrences indicating reversibility.

Keywords: many body; body; quantum information; body systems; near criticality

Journal Title: Physical review letters
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.