LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Efficient classical simulation of Clifford circuits with nonstabilizer input states

We investigate the problem of evaluating the output probabilities of Clifford circuits with nonstabilizer product input states. First, we consider the case when the input state is mixed, and give… Click to show full abstract

We investigate the problem of evaluating the output probabilities of Clifford circuits with nonstabilizer product input states. First, we consider the case when the input state is mixed, and give an efficient classical algorithm to approximate the output probabilities, with respect to the l_{1} norm, of a large fraction of Clifford circuits. The running time of our algorithm decreases as the inputs become more mixed. Second, we consider the case when the input state is a pure nonstabilizer product state, and show that a similar efficient algorithm exists to approximate the output probabilities, when a suitable restriction is placed on the number of qubits measured. This restriction depends on a magic monotone that we call the Pauli rank. We apply our results to give an efficient output probability approximation algorithm for some restricted quantum computation models, such as Clifford circuits with solely magic state inputs, Pauli-based computation, and instantaneous quantum polynomial time circuits. Finally, we discuss the relationship between Pauli rank and stabilizer rank.

Keywords: clifford circuits; input states; efficient classical; output; state; circuits nonstabilizer

Journal Title: Physical review letters
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.