LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Insulator-Metal Transition and Topological Superconductivity in UTe_{2} from a First-Principles Calculation.

Photo from wikipedia

We theoretically study superconductivity in UTe_{2}, which is a recently discovered strong candidate for an odd-parity spin-triplet superconductor. Theoretical studies for this compound faced difficulty because first-principles calculations predict an… Click to show full abstract

We theoretically study superconductivity in UTe_{2}, which is a recently discovered strong candidate for an odd-parity spin-triplet superconductor. Theoretical studies for this compound faced difficulty because first-principles calculations predict an insulating electronic state, incompatible with superconducting instability. To overcome this problem, we take into account electron correlation effects by a GGA+U method and show the insulator-metal transition by Coulomb interaction. Using Fermi surfaces obtained as a function of U, we clarify topological properties of possible superconducting states. Fermi surface formulas for the three-dimensional winding number and three two-dimensional Z_{2} numbers indicate topological superconductivity at an intermediate U for all the odd-parity pairing symmetry in the Immm space group. Symmetry and topology of superconducting gap nodes are analyzed and the gap structure of UTe_{2} is predicted. Topologically protected low-energy excitations are highlighted, and experiments by bulk and surface probes are proposed to link Fermi surfaces and pairing symmetry. Based on the results, we also discuss multiple superconducting phases under magnetic fields, which were implied by recent experiments.

Keywords: superconductivity; metal transition; insulator metal; first principles; ute; superconductivity ute

Journal Title: Physical review letters
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.