LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Universal Signature from Integrability to Chaos in Dissipative Open Quantum Systems.

Photo from wikipedia

We study the transition between integrable and chaotic behavior in dissipative open quantum systems, exemplified by a boundary driven quantum spin chain. The repulsion between the complex eigenvalues of the… Click to show full abstract

We study the transition between integrable and chaotic behavior in dissipative open quantum systems, exemplified by a boundary driven quantum spin chain. The repulsion between the complex eigenvalues of the corresponding Liouville operator in radial distance s is used as a universal measure. The corresponding level spacing distribution is well fitted by that of a static two-dimensional Coulomb gas with harmonic potential at inverse temperature β∈[0,2]. Here, β=0 yields the two-dimensional Poisson distribution, matching the integrable limit of the system, and β=2 equals the distribution obtained from the complex Ginibre ensemble, describing the fully chaotic limit. Our findings generalize the results of Grobe, Haake, and Sommers, who derived a universal cubic level repulsion for small spacings s. We collect mathematical evidence for the universality of the full level spacing distribution in the fully chaotic limit at β=2. It holds for all three Ginibre ensembles of random matrices with independent real, complex, or quaternion matrix elements.

Keywords: universal signature; open quantum; quantum systems; distribution; dissipative open

Journal Title: Physical review letters
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.