LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Solvable Strong-Coupling Quantum-Dot Model with a Non-Fermi-Liquid Pairing Transition.

Photo from wikipedia

We show that a random interacting model exhibits solvable non-Fermi-liquid behavior and exotic pairing behavior. This model, dubbed as the Yukawa-SYK model, describes the random Yukawa coupling between M quantum… Click to show full abstract

We show that a random interacting model exhibits solvable non-Fermi-liquid behavior and exotic pairing behavior. This model, dubbed as the Yukawa-SYK model, describes the random Yukawa coupling between M quantum dots each hosting N flavors of fermions and N^{2} bosons that self-tune to criticality at low energies. The diagrammatic expansion is controlled by 1/MN, and the results become exact in a large-M, large-N limit. We find that pairing only develops within a region of the (M,N) plane-even though the pairing interaction is strongly attractive, the incoherence of the fermions can spoil the forming of Cooper pairs, rendering the system a non-Fermi liquid down to zero temperature. By solving the Eliashberg equation and the renormalization group equation, we show that the transition into the pairing phase exhibits Kosterlitz-Thouless quantum-critical behavior.

Keywords: coupling quantum; model; non fermi; fermi liquid; transition

Journal Title: Physical review letters
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.