LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ground-State Cooling and High-Fidelity Quantum Transduction via Parametrically Driven Bad-Cavity Optomechanics.

Photo from wikipedia

Optomechanical couplings involve both beam splitter and two-mode-squeezing types of interactions. While the former underlies the utility of many applications, the latter creates unwanted excitations and is usually detrimental. In… Click to show full abstract

Optomechanical couplings involve both beam splitter and two-mode-squeezing types of interactions. While the former underlies the utility of many applications, the latter creates unwanted excitations and is usually detrimental. In this Letter, we propose a simple but powerful method based on cavity parametric driving to suppress the unwanted excitation that does not require working with a deeply sideband-resolved cavity. Our approach is based on a simple observation: as both the optomechanical two-mode-squeezing interaction and the cavity parametric drive induce squeezing transformations of the relevant photonic bath modes, they can be made to cancel one another. We illustrate how our method can cool a mechanical oscillator below the quantum backaction limit, and significantly suppress the output noise of a sideband-unresolved optomechanical transducer.

Keywords: cooling high; state cooling; ground state; high fidelity; cavity; fidelity quantum

Journal Title: Physical review letters
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.