LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Anharmonic Eigenvectors and Acoustic Phonon Disappearance in Quantum Paraelectric SrTiO_{3}.

Pronounced anomalies in the SrTiO_{3} dynamical structure factor, S(Q,E), including the disappearance of acoustic phonon branches at low temperatures, were uncovered with inelastic neutron scattering (INS) and simulations. The striking… Click to show full abstract

Pronounced anomalies in the SrTiO_{3} dynamical structure factor, S(Q,E), including the disappearance of acoustic phonon branches at low temperatures, were uncovered with inelastic neutron scattering (INS) and simulations. The striking effect reflects anharmonic couplings between acoustic and optic phonons and the incipient ferroelectric instability near the quantum critical point. It is rationalized using a first-principles renormalized anharmonic phonon approach, pointing to nonlinear Ti-O hybridization causing unusual changes in real-space phonon eigenvectors, frequencies, group velocities, and scattering phase space. Our method is general and establishes how T dependences beyond the harmonic regime, assessed by INS mapping of large reciprocal-space volumes, provide real-space insights into anharmonic atomic dynamics near phase transitions.

Keywords: eigenvectors acoustic; space; disappearance; anharmonic eigenvectors; phonon; acoustic phonon

Journal Title: Physical review letters
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.